Maximum of branching Brownian motion in a periodic environment
نویسندگان
چکیده
Nous étudions le maximum du mouvement Brownian branchant (BBM) avec des taux de branchement qui varient en l’espace, via une fonction périodique. Ceci correspond à variante l’équation F-KPP milieu périodique, largement étudiée au cours 15 dernière années, admet fronts pulsés comme solutions. Les progrès récents sur cette EDP Hamel, Nolen, Roquejoffre and Ryzhik (’16) impliquent la tension centré BBM Ici, nous établissons convergence distribution sous-suites spécifiques ce centré, et identifions loi limite. Par conséquent, trouvons décalage asymptotique entre solution correspondante les données initiales Heavyside l’onde pulsatoire, répondant ainsi question Hamel al. Des résultats analogues sont donnés pour cas où Brownien est remplacé par diffusion Ito coefficients périodiques, que marches aléatoires branchantes plus proche voisin.
منابع مشابه
Hyperbolic branching Brownian motion
Hyperbolic branching Brownian motion is a branching di usion process in which individual particles follow independent Brownian paths in the hyperbolic plane H2, and undergo binary ssion(s) at rate ¿0. It is shown that there is a phase transition in : For 51=8 the number of particles in any compact region of H2 is eventually 0, w.p.1, but for ¿1=8 the number of particles in any open set grows to...
متن کاملDirecting Brownian motion on a periodic surface.
We consider an overdamped Brownian particle, exposed to a two-dimensional, square lattice potential and a rectangular ac drive. Depending on the driving amplitude, the linear response to a weak dc force along a lattice symmetry axis consist in a mobility in basically any direction. In particular, motion exactly opposite to the applied dc force may arise. Upon changing the angle of the dc force ...
متن کاملSlowdown for time inhomogeneous branching Brownian motion
We consider the maximal displacement of one dimensional branching Brownian motion with (macroscopically) time varying profiles. For monotone decreasing variances, we show that the correction from linear displacement is not logarithmic but rather proportional to T . We conjecture that this is the worse case correction possible.
متن کاملBranching Brownian Motion with “mild” Poissonian Obstacles
We study a spatial branching model, where the underlying motion is Brownian motion and the branching is affected by a random collection of reproduction blocking sets called mild obstacles. We show that the quenched local growth rate is given by the branching rate in the ‘free’ region . When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the local growth that ...
متن کاملBrownian motion in fluctuating periodic potentials
This work deals with the overdamped motion of a particle in a fluctuating one–dimensional periodic potential. If the potential has no inversion symmetry and its fluctuations are asymmetric and correlated in time, a net flow can be generated at finite temperatures. We present results for the stationary current for the case of a piecewise linear potential, especially for potentials being close to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1219